服務(wù)熱線
177-5061-9273
為什么大型香水公司要建立EEG部門(mén)?香味能喚起記憶、思想和感情,而嗅覺(jué)是一門(mén)復(fù)雜的科學(xué)。
在紐約、圣保羅、巴黎和新加坡(僅舉幾例)的高層建筑中,你可以找到現(xiàn)代香水行業(yè)的實(shí)驗(yàn)室和辦公室。
這就是那些精通香水藝術(shù)(和科學(xué))的人,將有趣的氣味分子混合在一起,最終形成微小的香油滴,不僅可以進(jìn)入你梳妝臺(tái)上的一瓶香水或須后水,還可以進(jìn)入你的洗衣液、沐浴露、洗碗皂、止汗劑……。
下次你洗澡或淋浴時(shí),看看肥皂或洗發(fā)水的瓶子。在配料表中,你通常能找到“香料fragrance”這個(gè)詞。
但這個(gè)詞并不能公平地描述隱藏在這9個(gè)字母背后的數(shù)十億美元的產(chǎn)業(yè)。如果我告訴你這些公司有腦電圖部門(mén)。是的,腦電圖。
也許你會(huì)問(wèn),究竟為什么像高砂、德之馨和奇華頓這樣的香水公司要使用EEG?
對(duì)香味的感知
氣味就像圖像或音樂(lè)一樣,能夠喚起記憶,影響你的想法和感覺(jué)。事實(shí)上,這甚至已經(jīng)發(fā)展成為一個(gè)完整的芳香療法領(lǐng)域,旨在治愈你的壓力,改善你的情緒(參見(jiàn)Rachel Herz的綜述https://www.tandfonline.com/doi/full/10.1080/00207450802333953)。
氣味好還不夠。現(xiàn)在,人們期望香水能提升情緒、平靜情緒,甚至能提高注意力——人們很快就把這些功能和其他功能結(jié)合起來(lái)了。“我們擁有的數(shù)據(jù)顯示,80%的消費(fèi)者正在尋找一種改善他們健康的方法,而他們通常在他們使用的品牌中找不到這種方法……
更重要的是,氣味通常是在潛意識(shí)層面上起作用的,你甚至都沒(méi)有注意到——看看西北大學(xué)研究人員的這項(xiàng)研究(https://journals.sagepub.com/doi/full/10.1111/j.1467-9280.2007.02023.x)吧。
實(shí)驗(yàn)范式。首先,使用上升樓梯程序確定參與者特定的氣味檢測(cè)閾值。然后,參與者完成一項(xiàng)氣味檢測(cè)和喜好判斷任務(wù)。在本例中,檢測(cè)閾值為稀釋20,因此在主要任務(wù)中使用稀釋22。在這項(xiàng)任務(wù)中,參與者嗅了一個(gè)瓶子,指出它是否含有氣味,觀看了一個(gè)面部刺激,最后評(píng)價(jià)了這張臉的受歡迎程度。對(duì)于一部分參與者,記錄了心率。
然而,我們對(duì)氣味的感知反應(yīng)并不像對(duì)視覺(jué)或聽(tīng)覺(jué)刺激那么直接。
當(dāng)你聞到一種由100多種不同成分混合而成的香水時(shí),你只需要考慮它的化學(xué)動(dòng)力學(xué)就能意識(shí)到它有多復(fù)雜。不同的分子以不同的速度到達(dá)你的鼻子。知覺(jué)體驗(yàn)隨著每一次呼吸、每一次嗅聞而變化。香味會(huì)隨著時(shí)間的推移而變化,所以你第一次使用香味產(chǎn)品時(shí)聞到的味道和幾小時(shí)后聞到的味道是不同的。更不用說(shuō)隨著時(shí)間的推移,你會(huì)適應(yīng)和習(xí)慣香味,這意味著你的鼻子和大腦都會(huì)在重復(fù)或持續(xù)接觸氣味的情況下降低對(duì)氣味的敏感度和反應(yīng)。
還有一個(gè)額外的因素是,你的嗅覺(jué)在你的一生中是可塑的。你的鼻子和大腦之間的連接路徑會(huì)根據(jù)你的嗅覺(jué)體驗(yàn)不斷更新。不僅在產(chǎn)前和童年時(shí)期,而且在你成年后,也會(huì)改變你對(duì)香味的感知方式(參見(jiàn)杰西卡·布蘭恩和斯圖爾特·費(fèi)爾斯坦的這篇綜述https://www.frontiersin.org/articles/10.3389/fnins.2014.00182/full)。
小鼠嗅覺(jué)上皮的組織和區(qū)域。(A)嚙齒動(dòng)物鼻子的矢狀圖,描繪了嗅覺(jué)上皮和犁鼻器(VNO)的位置。(B) VNO為雙側(cè)對(duì)稱(chēng)管狀結(jié)構(gòu);這里顯示的是一個(gè)冠狀面的一半,因?yàn)樗鼘⑼ㄟ^(guò)這個(gè)結(jié)構(gòu)的深度出現(xiàn)。邊緣區(qū)(M)位于VNO的極端背側(cè)(D)和腹側(cè)(V)區(qū)域。與邊緣帶相鄰的是中間帶(I),中間帶和中間帶之間是中心帶(Ce)。OB,嗅球;OE,嗅上皮;B,血管;C,尾;L,腔;R,吻側(cè)。《神經(jīng)科學(xué)雜志》(Brann and Firestein, 2010)授權(quán)轉(zhuǎn)載。(C)嗅覺(jué)上皮由五種原始細(xì)胞類(lèi)型組成,包括水平基底細(xì)胞(HBC)、球形基底細(xì)胞(GBC)、未成熟嗅覺(jué)感覺(jué)神經(jīng)元(OSNi)、成熟嗅覺(jué)感覺(jué)神經(jīng)元(OSNm)和支撐細(xì)胞(Sus)。
香味和腦電圖
即使對(duì)最專(zhuān)業(yè)的嗅覺(jué)腦電圖研究人員來(lái)說(shuō),嗅覺(jué)感知的復(fù)雜性也構(gòu)成了相當(dāng)大的挑戰(zhàn)。但是,除了使用腦電圖(EEG)之類(lèi)的技術(shù)(見(jiàn)腦電圖測(cè)量什么?有關(guān)此技術(shù)的更多信息)。
無(wú)線腦電圖系統(tǒng)的進(jìn)步(參見(jiàn)將神經(jīng)技術(shù)帶出實(shí)驗(yàn)室)為這些香水公司的研究部門(mén)提供了以一種經(jīng)濟(jì)、快速和有意義的方式測(cè)量實(shí)時(shí)大腦反應(yīng)的機(jī)會(huì),以支持香水開(kāi)發(fā)過(guò)程。這可以幫助他們理解氣味和其他感官之間的多感官相互作用;為了測(cè)量注意力投入的程度;或者研究香水的情感影響。
的確,不同的香味會(huì)在大腦活動(dòng)中產(chǎn)生根本不同的動(dòng)態(tài)反應(yīng)。
韓國(guó)江原國(guó)立大學(xué)的植物研究人員sonndharajan和Kim在這里總結(jié)了EEG對(duì)不同植物香味的反應(yīng)的一些不同研究結(jié)果。各種研究證明了從植物中提取的各種香精油具有喚醒(激活)或放松的特性,通常是通過(guò)分析主要的腦電圖頻段,如α和β。這些信息可以被香水公司用來(lái)指導(dǎo)他們的香水開(kāi)發(fā)過(guò)程。(https://www.mdpi.com/2218-0532/84/4/724)
腦電波自然地出現(xiàn)在活動(dòng)狀態(tài)和休息狀態(tài)。我們的思想、情緒和行為都是大腦中神經(jīng)元活動(dòng)的反映。腦電波的激活是神經(jīng)元電活動(dòng)的特征,特別是大腦中神經(jīng)元離子流產(chǎn)生的電壓波動(dòng)。腦電圖測(cè)量這些電活動(dòng),并將其表示為波或振蕩。通常,這些腦電波代表了整個(gè)大腦的特定功能。腦電圖可能受睡眠、腦功能障礙、藥物和年齡等因素的影響。根據(jù)大腦功能的不同狀態(tài),有許多從0.05到500hz不等的獨(dú)立波段。當(dāng)我們感到疲倦、遲鈍或做夢(mèng)時(shí),頻率較低的腦電波占主導(dǎo)地位。另一方面,當(dāng)我們感到興奮或高度警覺(jué)時(shí),較高的頻率占主導(dǎo)地位。以下頻段類(lèi)別與治療最相關(guān)(圖2)。
理解個(gè)人和文化偏好
從研究的角度來(lái)看,EEG可以幫助這些全球組織的科學(xué)家揭示世界各地不同人群和文化中嗅覺(jué)反應(yīng)的差異,以了解經(jīng)驗(yàn)、文化和個(gè)性如何導(dǎo)致對(duì)香味的感知和偏好的差異。這也說(shuō)明了為什么有些人更喜歡果香、花香,而有些人更喜歡木質(zhì)、泥土味。并展示了這種多樣性是如何在人類(lèi)大腦的復(fù)雜世界中表現(xiàn)出來(lái)的。
當(dāng)然,腦電圖不能告訴你如何創(chuàng)造完美的香水。這仍然是香水大師的工作,他們?cè)谑澜绺鞯氐囊恍┫闼畬W(xué)校接受了多年的培訓(xùn)。這些人的專(zhuān)業(yè)知識(shí)被如此珍視,以至于他們的香水配方都是最高機(jī)密,只有少數(shù)人知道。
但下次當(dāng)你用有香味的肥皂洗手,或把剛洗好的衣服收起來(lái)時(shí),停下來(lái)想一想你的腦電圖會(huì)是什么樣子。為了支持這一想法,這里有一張人們已經(jīng)發(fā)現(xiàn)的表格(摘自桑德哈拉賈和金,2016年)
表:吸入香氣對(duì)腦電圖活動(dòng)的影響
S. No. | Odorant Materials | EEG Wave Changes | Brain Functions |
1. | Galaxolide | Alpha decreased. | Odors produce divided attention even when undetected. |
2. | m-Xylene | Alpha increased. | Stimulating and excitatory effects. |
3. | Birch tar, galbanum, heliotropine, jasmine, lavender, lemon and peppermint | Increased theta for birch tar, jasmine, lavender and lemon. | Subjects differed in their subjective responses to the odors. |
4. | 5-α-Androstan-3-one, bangalol, white sapphire, indole, linalyl acetate, eucalyptus oil and ammonia. | Alpha increased. | From more anterior electrodes—related to psychometric responses. |
5. | Phenylethyl alcohol and valeric acid | Valeric acid—alpha 2 increased. | Unpleasant odor leads to a cortical deactivation. |
6. | Lavender and rosemary | Lavender—beta increased. Rosemary—frontal alpha and beta decreased. | Lavender—increased drowsiness. Rosemary—increased alertness. |
7. | Synthetic odors—almond, chocolate, spearmint, strawberry, vegetable, garlic, onion and cumin Odors of real foods—chocolate, baked beans and rotting pork | Chocolate odor—less theta activity. | Reduced level of attention. |
8. | Chewing of marketed gum | Alpha power increased. | Arousal psychosomatic responses. |
9. | Valeriana off, Lavandula off, Passiflora incarnata, Piper methysticum, Melissa off, Eschscbolzia californica, Hypericum perforatum and Ginkgo biloba | Valerian extract—delta and theta activity increased and beta activity decreased. | Self-rated tiredness increased under some of the plant extracts. |
10. | (R)-(?)-, (S)-(+)- and (RS)-(±)-forms of linalools | (RS)-(±)-linalool—greater decrease of the beta wave after work than before work. | (RS)-(±)-linalool and (R)-(?)-linalool -favorable impression. (S)-(+)-linalool—unfavorable impression. |
11. | Chewing regular gum or gum base without flavor | Alpha-2 and beta-2 increased for regular gum and decreased for gum base. | Activates different brain neuronal populations. |
12. | Sedative effects—lemon, lavender and sandalwood Awakening effects—jasmine, ylang-ylang, rose and peppermint | Awakening fragrances—decreased alpha and beta activities. | Sedative fragrances—improvement in productivity. Awakening fragrances—effect in mitigating the workload. |
13. | Lavender, chamomile, sandalwood and eugenol | Alpha 1 decreased at parietal and posterior temporal regions. | Subjects felt comfortable. |
14. | Chewing gum with and without flavor and flavored aromatic oil | Chewing gum with flavor and inhale aromatic oil increase alpha and beta waves. | Induce concentration with a harmonious high arousal state in brain function. |
15. | Enantiomers of linalools | (R)-(?)-linalool—beta decreased after hearing environmental sound. Mental work—beta increased. | Odor perception and responses—chiral dependence and also with task dependence. |
16. | Aroma of soybeans heated to various temperatures | Alpha wave increased—heated after immersion in fructose–glycine solution. | Amino-carbonyl reaction aroma products increase brain alpha waves. |
17. | β-Damascenone | Non-significant trend for left frontal differences in EEG associated with different liking responses. | Left frontal response associated with liking an odor. |
18. | Lavender and rosemary aromas | Induce left frontal EEG shifting in adults and infants with greater baselines than right frontal EEG activation. | Associated with greater approach behavior and less depressed affect. |
19. | General workers, perfume salespersons and professional perfume researchers | Professional perfume researchers respond to odors mainly in the frontal region. | Functional coupling for people—occupationally exposed to odors may be related to psychological preference. |
20. | Lavender and rosemary | Increased relative left frontal EEG asymmetry. | Infants of depressed and non-depressed mothers respond differently to odors. |
21. | Para-cresol 4-methylphenol, 2-heptanone, methional 3-methylthiopropionaldehyde and dimethyltrisulphide. | Theta wave activation in frontal region between the different populations. | Cultural differences in odor responsiveness. |
22. | Pleasant odor | Beta wave increased in the left frontal region. | Enhancement of left frontal brain region by a pleasant odor. |
23. | Neroli and grapefruit oils | Slow alpha (8–10 Hz) and theta activities increased in the occipital region. | Reduce the cortical deactivation or promote a relaxed state. |
24. | Low-dose alcohol | Theta power decreased in both hemispheres in the high-dose condition. | Corresponding to working memory demand. |
25. | Odor of incense and rose oil | Fast alpha activity increased in bilateral posterior regions during incense exposure. | Cortical and function of inhibitory processing of motor response. |
26. | Citrus bergamia oil | Negative percentage changes of the ratio of low to high frequency in the music, aroma and combined groups than control group. | Listening to soft music and inhaling Citrus bergamia essential oil—effective method of relaxation. |
27. | Abies sibirica essential oil | Increased theta activity after the visual display terminal task. | Prevention of visual display terminal—mental health disturbance. |
28. | Lavandula angustifolia | Good sleep quality—occipital and parietal alpha decreased, frontal theta and occipital beta increased. Poor sleep quality—theta increased in the all cranial regions. | Beneficial effect for female adults with sleep disorder. |
29. | Lavender oil | Theta and alpha activities increased. | Relaxing effect of inhaling lavender oil. |
30. | Essential oil of Zizyphus jujuba seeds | Fast alpha increased in the left prefrontal, right prefrontal and left frontal regions. | Increasing attention and relaxation. |
31. | Essential oil of Mentha arvensis L. f. piperascens aerial parts | Relative fast alpha increased. Gamma and the spectral edge frequency 90% decreased. | Reducing mental stress. |
32. | Jasmine oil | Beta wave increased in the anterior center and left posterior regions. | Increased—feeling of well-being, active, fresh and romantic. |
33. | Ylang–ylang essential oil | Prolonged the latencies of P300 | Not affect information processing resources in patients with TLE. |
34. | Essential odors—mint and lemon Commerical odors—criton-verbena, lize, melody and rozan | All odors affected the EEG waves in at least some subjects. | Essential odors stimulated more than commercial odors and women are more sensitive than men. |
35. | Pan-fired Japanese green tea (Koushun and Kouju) | Kouju affect the beta 1 at right frontal region. | Improve memory task performance. |
36. | Magnolia kobus flower | Absolute alpha decreased at left parietal region. | Awaken and increase the concentration states of brain. |
37. | Strawberry aroma (food) and the odor of lily of the valley (non-food) | Specific scalp potential maps for the two conditions. | Food odor—associated with the processing of rewards. Non-food odor—reflects odor characteristics excluding the reward. |
38. | Hyperbaric oxygen exposure | Fast delta decreased and alpha increased in the posterior regions. | Oxygen-toxicity diving-related problems. |
39. | Lemon, peppermint, and vanilla | Theta showed statistically significant results between different odor conditions | Stimuli can affect the frequency characteristics of the electrical activity of the brain. |
40. | Isomers of limonene and terpinolene | (+)-Limonene—relative high beta increased in the right temporal region. Terpinolene—relative mid beta decreased and relative fast alpha increased in the right prefrontal region. | Terpinolene—reducing the tension and increasing the relaxation and stabilization states of brain function. |
41. | Essential oil of Inula helenium root | Theta (in all the regions except T3), beta (Fp1) and mid beta (P4) and relative theta (Fp1, Fp2, F3 and F4) decreased. | Enhance the alertness state of brain. |
42. | Lavender and bergamot | The absolute theta increased at the right prefrontal region Significant differences in the relative fast and slow alpha. | Both physical and mental states became more stable and relaxed. |